SVENSK FARTYGSRADIOHISTORIA

Tidig historia

År 1897 utförde Guglielmo Marconi radioexperiment mellan två italienska krigsfartyg utanför La Spezia, där telegraferingssträckan blev 12 nautiska mil (ca 22 km).

I juli 1898 fick den civila engelska ångaren Flying Huntressen fartygsradiostation tillfälligt installerad, för att som första idrottsrelaterade användning av radio, kunna sända resultat från Kingstonregattan till tidningenDaily Express.

Julafton 1898 öppnades radiotelegrafiförbindelse mellan East Goodwin fyrskepp och South Forelandfyren utanför sydöstra England. Den 3:e mars 1899 kolliderade ångaren R F Matthewsmed fyrskeppet, som via radio meddelade South Foreland varifrån hjälp sändes ut. Detta var första gången ett nödmeddelande sändes via radio från fartyg.

Våren 1902 seglade Marconi med amerikanska fartyget Philadelphia från Frankrike till USA. Fartyget var utrustat med kohär *) och bläckskrivare för att som experiment kunna ta emot radiosändningar från bl.a kustradiostationen i Poldhu i Cornwall. Sista mottagandet skedde strax utanför amerikanska kusten, men mottagningen var då mycket dålig.

*) Kohären (eng. coherer, av koherens), första anordning som kunde detektera radiosignaler för trådlös telegrafi. Den utnyttjar att den höga elektriska resistansen i löst metallspån sjunker kraftigt när det utsätts för radiofrekvent växelström. Spånet blir då samordnat, koherent. Kohären var grundstenen i de allra första radiomottagarna från år 1895 och dominerade ungefär tio år framåt. Sedan kom elektronrör och kristaller som båda kunde lösa kohärens uppgift på ett betydligt bättre sätt och även demodulera radiosignalers amplitudförändringar så att tal och musik kunde återges.

I Sverige utrustades flottans pansarbåtar Oden, Thor och Niord samt torpedkryssaren Claes Uggla med trådlös apparatur år 1901 och förbindelse uppnåddes som längst på 49 km avstånd.

Det första svenska handelsfartyget med fartygsradiostation var Göteborgsrederiet Wilson & Co:s kolångare St. Paul som 15 december 1911 sände första telegrammet. Fartyget fick också den första koncessionen för gnistsändare som utfärdades av Kungliga Telegrafstyrelsen den 4 oktober 1912. St Paul:s anropssignal var SFA. Fartyget minsprängdes och sjönk utanför Tyne i England 2 september 1914 som första svenska fartyg att falla offer för första världskriget. Under tiden som nödmeddelandet SOS sändes ut, föll antennen ned.

Första svenska privatägda fartyg med radiostation var bogserbåten Max Göteborg den 27 januari 1912. Då båtens ägare var sillexportörer, kunde fartyget rapportera in fångstresultat från de inbogserade fiskepråmarna, vilket medförde snabbare försäljning av fisken. Konkurrensfördelen gjorde att fartyget fick radiomasten kapad, och fiskare vägrade sälja sin vara till båtens ägare.

Utveckling fram till 1940

Internationella konferenser om trådlös kommunikation till sjöss hölls 1903 och 1906. Bolaget Marconi hindrades från att få monopol på området, då alla kustradiostationer blev skyldiga att vidarebefordra alla fartygsstationers telegram oberoende av radiostationernas fabrikat.

Regler för nödtrafik antogs, t.ex. kom man överens om nödsignalen SOS, samt att fartygsradiostationer skulle betjänas av certifierade telegrafister. Internationella konferensen 1912 hölls några månader efter katastrofen med Titanic. Det innebar ytterligare regler för sjösäkerhet mot bakgrund av erfarenheterna från olyckan, bl.a. krav på ständig passning av telegrafi-nödfrekvensen 500 kHz på alla fartygsradiostationer, samt extra nödsändare med reservkraft för minst 6 timmar på större fartyg. Ytterligare
regler antogs vid konferenser om “Safety of Life at Sea” SOLAS 1914 och framåt, däribland regler om tystnadsperioder (eng. Silence Period=SP) på 3 minuter varje halvtimma, då alla radiostationer skall lyssna på nödfrekvens. Internationella nödanropet på radiotelefoni, “Mayday”, fastslogs 1929.

Elektronikkomponenter utvecklades snabbt i början av 1900-talet. De tidiga mottagarna med kohär, ersattes med Marconis mottagare med magnetisk detektor och därefter med kristalldetektorer (kristallmottagare). På 1920-talet slog rörmottagare igenom mera allmänt i fartygen, och i slutet på decenniet kom yttre högtalare vilket gjorde att telegrafisterna inte ständigt behövde arbeta med hörlurar på sig. Då triodelektronröret förbättrats på 1910- och början av 1920-talet, började det även ersätta de tidiga gnistsändarna. Enligt internationell överenskommelse 1927 fick inte gnistsändare med hög effekt användas ombord efter 1 januari 1940 och den gamla utrustningen fasades ut under 30-talet.

För att kunna uppfylla kravet på ständig passning av nödfrekvens även på fartyg med en ensam telegrafist tillkom en alarmapparat, eller “autoalarm”, i slutet av 20-talet. Denna apparat uppfångade de 4 sekunder långa signaler åtskilda av 1 sekunds mellanrum, som enligt internationella överenskommelser skall föregå ett SOS-meddelande. Efter 4 uppfångade alarmsignaler aktiverades alarmklockor i radiohytt, telegrafistens bostadshytt och på bryggan.

Kommunikationsmetod för fartygsradiostationer var från början enbart telegrafi på långvåg, men med rörsändarnas intåg i början av 20-talet började även telefoni på långvåg, och senare samma decennium började fartyg även att utrustas för telegrafi på kortvåg. Några fartyg i oceanfart utrustades för telefoni på kortvåg under senare delen av 30-talet, bl.a Svenska Amerika Liniens Gripsholm och Kungsholm. Då radiosamtal kan uppfattas av alla som lyssnar på rätt frekvens, och i alla påslagna radioapparater ombord, utrustades speciellt passagerarfartygen med talförvrängare (eng. scrambler), av telegrafisterna kallad “duck” då talet omvandlades till något Kalle Anka-liknande. Det s.k gränsvågsbandet, frekvenser mellan lång- och kortvåg, fördelades för radiotelefoni vid en internationell konferens 1932.

Utveckling fram till 1960

Vid de internationella radiokonferenser som hölls efter andra världskriget, 1947 och 1948, beslutades om uppdelning av frekvensband, där främst flygradion tilldelades ca 30 procent av fartygsradions frekvensband. Nödfrekvens på telefoni blev 2182 kHz, och skulle ha tystnadsperiod 3 minuter efter varje hel- och halvtimma.

En alarmsignal för radiotelefoni, på telegrafistslang kallad “nödgöken”, togs fram på initiativ från en radiokonferens i Göteborg 1955, den blev internationell standard 1959. Denna alarmsignal bestod av två toner på 2200Hz-1300Hz sända på 2182 kHz och skulle föregå ett telefoni-nödmeddelande. Signalen påminner om en ambulans, och skulle höras bättre av vakthavande på bryggan.

Då det började bli trångt på radiofrekvenserna, kom krav på förbättrad noggrannhet hos sändare och mottagare. Enligt beslut från de tidigare radiokonferenserna, måste reservsändare med helt separata matnings- och styrsystem finnas. Dessutom tillkom krav på att automatisk teckengivare för alarmsignal, nödmottagare och testmöjlighet av nödutrustningen skulle finnas ombord.

En stor förbättring för radiotelefonin kom när fartygen utrustades med sändare och mottagare för Single Side-Band (SSB). Detta innebar mindre störningar på samtalet och effektivare användning av sändareffekten. Första svenska installationen av SSB-sändare/mottagare gjordes på Svenska Amerikalinjens Gripsholm (anropssignal SLQT)
år 1957.

Utveckling från 1960 till GMDSS

I och med uppfinningen av transistorn togs återigen ett tekniksprång. Under 1960-talet började sändare användas som hade transistorer i styrdelen, inklusive frekvenssyntes som ersättning för styrkristaller, men rör fanns fortfarande i slutsteget. En extra finess var införande av automatisk antennavstämning (eng. antenna-tuner), dvs elektrisk anpassning av antennen till sändarens frekvens med hjälp av en LC-krets, tidigare ett tidsödande manuellt arbete som nu ersattes med en knapptryckning. På mottagarsidan kom heltransistoriserade mottagare av mycket god kvalitet att ersätta rörmottagarna i fartygsradiostationer först i mitten av 1970-talet. Då telex och telefax börjat användas i land uppstod behov att kommunicera med dessa trafikslag till fartyg. I Västtyskland gjordes 1960 experiment med telefax till fartyg som betecknades som mycket lyckade.

VHF-telefoni

Från 1960 infördes VHF-radio på 160 MHZ bandet. Denna användes för kusttelefoni inom horisontavstånd, samt för kontakt med hamnmyndigheter, lotsar och andra fartyg med anrops och nödkanal 16. Efter inledande oklarhet om moduleringsteknik enades man slutligen om frekvensmodulering (FM). Efter att de första VHF-apparaterna varit rörbestyckade blev de från mitten av 1980-talet heltransistoriserade.

Radiotelex – Maritex.

Efter att telex via radio testats i flera år i olika länders fartyg som en teknik där man först måste avtala om hur sändningen skulle gå till, utvecklade svenska Televerket Radio systemet Maritex, som blev ett datoriserat system för helautomatisk telex via kortvåg. Försök började på Salénrederiernas passagerarfärja Tor Hollandia och tankfartyget Sea Sovereign 1969, och 1972 öppnade Maritexsystemet för kommersiell drift, där de landbaserade datorerna i systemet var placerade på kustradiostationen Göteborg radio.

Satellitkommunikation.

Vid en konferens hållen av IMCO (Intergovernmental Maritime Consultative Organization, dvs FN:s sjöfartsorgan) i London 1975, enades man om att arbeta för ett världsomspännande maritimt satellitsystem, och att en internationell organisation för detta behövdes. Fördelarna var bland annat förbättrad kvalitet på telefoni, vilket skulle underlätta för ombordanställda. 1976 sändes de två första satelliterna i amerikanska Marisat-systemet, Marisat I och II upp över Atlanten och Stilla Havet, och internationella provsändningar började via markstationer i USA. År 1979 började Inmarsat (International Maritime Satellite Organization) arbetet med att förvalta och driva ett världsomspännande satellitsystem för sjöfart. Med en tredje Marisat-satellit i drift över Indiska Oceanen hade Inmarsat 33 länder anslutna inom ett år. Amerikanska Marisat avlöstes 1982 av Inmarsat, med den första jordstationen i Europa placerad i Eik, sydost om Stavanger i Norge. I Sverige godkändes 1983 att utrustning för Inmarsat satellitkommunikation fick ersätta huvudsändaren för kortvåg på svenska fartyg. En separat nödsändare måste dock finnas.

Ett världsomspännande nytt sjösäkerhetssystem, GMDSS (Global Maritime Distress and Safety System) baserat på satellitkommunikation, antogs 1988 av IMO (International Maritime Organization, FN:s rådgivande sjöfartsorgan och efterföljare till IMCO) och trädde i kraft 1 februari 1999. GMDSS innebär att alla fartyg utrustas med långvågsmottagaren Navtex för navigations-varningar m.m. samt satellitnödsändare (EPIRB). Anrop sker via DSC (Digital Selective Calling) där varje fartyg har en egen identitetskod (MMSI) Maritime Mobile Service Identity, och uppkallning sker enligt telefonnummerprincipen.

Ingen telegrafikunnig personal behövs därmed ombord. Ett globalt nät av sambandsstationer för sjöräddning, MRCC (Maritime Rescue Co-ordination Center), har byggts upp. I Sverige finns JRCC på Käringberget i Göteborg. Alla svenska GMDSSoperatörer skall inneha GOC (General Operators Certificate), och utbildningen integreras numera i sjöbefälsutbildningen.

IMG_9912-sid16 'Radiomuseet' Gålöbasen 2013-sid20Zones-inmarsat-sid8

Täckningsområde för de ursprungliga 3 INMARSAT-satelliterna i GMDSS. Nordiska markstationer finns i Eik i Norge, och fanns då även i Blaavand i Danmark.

Inmarsat-3

 

 

 

Inmarsat-3

 

 

Exempel på fartygsradiostation före GMDSS

SIPU3-sid9

Fartygsradiostation på PCTC Madame Butterflycallsign SIPU, i maj 1986.

Första exemplet är radiohytten på biltransportfartyget Madame Butterfly1986, dvs. ett fartyg i oceanfart med krav på telegrafist ombord, innan säkerhetssystemet GMDSS trätt i kraft.

  1. Skrivmaskin för diverse expeditionsarbete.
  2. Interntelefon kopplad till fartygets telefonväxel.
  3. Huvudsändarens (ITT Marine ST 1610) lågspänningsdel (eng. Exciter), med inställningsmöjligheter för frekvens (från långvåg upp till 30 MHz kortvåg), typ av sändning (telegrafi, telefoni och telex) och uteffekt (steg upp till 1 kW). Snabbknappar för alarmsignal i nödsituation. Det finns även en koppling till Maritexsystemets ARQ-enhet (15) för automatisk styrning av sändaren vid telextrafik. Sändarens högspänningsdel finns i ett apparatrum ca 30 m akterut. Det aktra utrymmet fungerar även som reservradiohytt.
  4. Fjärrmanöverenhet till huvudsändaren och, i högerkant, anntennväljare för olika sändarantenner.
  5. Timer till bandspelaren (6).
  6. Yttre högtalare (överst) samt FM-radio och bandspelare med inspelningsmöjlighet från olika mottagare.
  7. VHF-transceiver, dvs sändare och mottagare för VHF-kommunikation sammanbyggda till en enhet. Motsvarande Tranceiver finns på bryggan.
  8. Handmikrotelefon, det vill säga telefonlur med PTT-omkopplare mellan sändning och mottagning i luren. Används här för kortvågs- och gränsvågstelefoni med halv duplex. Fartygsradiostationens anropssignal, här SIPU, enligt internationellt tilldelad landskod.
  9. Huvudmottagare (Skanti R5001S) avsedd för mottagning av marin radiotrafik på telegrafi och telefoni mellan 10kHz och 30MHz. Inställbar med knappsats eller analogt.
  10. Reservmottagare, i detta fallet exakt samma typ som huvudmottagaren. Kravet var att reservmottagaren skulle kunna strömförsörjas från radiostationens nödbatterier. I detta fallet kunde båda mottagarna drivas på 24V DC eller olika varianter av 50-60 Hz AC.
  11. Distributionspanel B20610. Används för att koppla olika mottagare till olika högtalare alt. telefonlur, samt i högerkant antennväljare för olika mottagarantenner.
  12. Nycklingsenhet som fjärrstyr reservsändaren (ITT Marine ST87). På enheten finns snabbinställningar för alarmsignal på telegrafi och telefoni, samt testmöjlighet av alarmmottagaren (14). På enheten finns också laddningkontroll och test av nödbatterierna som finns i ett utrymme ute på fartygets däck.
  13. Kontrollpanel för fjärrstyrning av reservsändaren ST87, bl.a automatisk antennavstämning. Sändaren ger 100W på telegrafi och 15W på telefoni och drivs direkt av nödbatterierna. Effektdelen av sändaren finns som för huvudsändaren i apparatrum ca 30 m akterut.
  14. Alarmmottagare (eng. Auto-alarm receiver). Används till att ta emot alarmsignalen på nödfrekvensen för telegrafi 500kHz bestående av 12 st, 4 sekunder långa toner och däremellan en sekunds tystnad vilket skall föregå ett nödanrop (SOS) om tid finns. Efter korrekt mottagning av minst 4 av de 12 alarmsignalerna aktiveras alarmklockor i radiohytt, telegrafistens bostadshytt och på bryggan. Enhetens funktion testas dagligen med hjälp av signalgivare i reservsändaren (12).
  15. Styrdator ARQ MX-80 (Automatic ReQuest unit), till automatiska telexsystemet Maritex.
  16. Mottagare (Skanti M5000). I grunden samma mottagare som (9) och (10) men specialanpassad för kommunikation med ARQ:n (15) vid Maritex-trafik.
  17. Telexskrivare Siemens T1000. Terminal för sändning och mottagning av telexmeddelande via Maritex. Används även till att ge kommandon till ARQ:n (15). Enheten har också remsstans och remsläsare för hålremsa, vilket fungerar som en enkel “bandspelare” och gör det möjligt att t.ex förbereda långa meddelanden för sändning.
  18. Röststyrd kommunikationslinje till bryggan. Medger kommunikation även om fartyget blir strömlöst (eng. blackout).
  19. Manipulator med paddlar till el-bugg, dvs halvautomatisk sändarnyckel för telegrafi.
  20. Radiodagbok. All trafik rörande fartygsradiostationen skall anges i radiodagboken.
  21. Stationsur. Tiden anges i UTC (tidigare GMT). Klockans timvisare ändras (på sjöslang “brassas”) aldrig, till skillnad från (22). Tystnadsperioderna (eng Silence Period=SP) på telegrafi (15-18 och 45-48), samt telefoni (00-03 och 30-33) är markerade på urtavlan. Vid dessa tider skall trafik avbrytas och lyssning efter svaga nödsignaler göras.
  22. Fartygets lokala tid kopplat till fartygets centralur. Timvisaren “brassas” en timma fram eller back beroende på hur fartyget rör sig mellan tidszonerna.
  23. Fartygsradiostationens gällande internationella certifikat, utfärdat av telemyndighet. I detta fallet svenska Televerket.

Exempel på GMDSS-fartygsradiostation.

800px-SAILOR_GMDSS_A3-sid11

Fartygsradiokonsol för GMDSS area A3 från den danska firman Thrane & Thrane. Andra exemplet är kommunikationskonsolen på bryggan hos ett fartyg med krav på GMDSS Area A3, dvs oceangående och med krav på satellitkommunikation.

Konsolen består på vardera sidan av två oberoende terminaler av typ Sailor TT-3000E, samt printers till satellitsystemet Inmarsat mini-C. Dessa terminaler möjliggör e-mail, telex, fax och datatrafik. Transceiver dvs ihopbyggd sändare och mottagare, samt antenn till systemet finns utomhus.

Överst i mittkonsolen finns manöverenhet till sändare och mottagare för Sailor System 5000 – MF/HF (gränsvåg och kortvåg) marin telefoni, samt inbyggd DSC (Digital Selective Calling) inklusive vaktmottagare. MF/HF-tranceiverdelen med möjlighet till endera av 150, 200 eller 500W uteffekt finns i apparatrum. Automatisk antennavstämningsenhet till MF/HF-antenn finns utomhus.

Därunder finns VHF-tranceivern, Sailor RT5022, som är halv-duplex. Sändaren är omkopplingsbar mellan 1 eller 25W uteffekt, och funktioner för DSC finns inbyggda. Enheten kan med en knapptryckning repetera de senaste 90 sekundernas inkommande trafik.

Näst underst finns moduler för sändning och mottagning av nödsignal via Inmarsat mini-C, “Remote Distress Alarm”. En modul för vardera av de två separata satellitsystemen.

Underst  i  mittkonsolen  finns  batteripanel  med  möjlighet  att  snabbt  kontrollera batteriernas  kondition.  Inmarsat  mini-C  drivs  med  28V  25A  DC,  medan  MF/HF-transceivern drivs med 24VDC eller 115/230VAC.

Förutom bryggkonsolen tillkommer enheter för AIS (Automatic Identification System), Navtex, flera handhållna enheter för VHF, samt EPIRB-nödradiofyr och SART- transpondrar.

 Maritex

Maritex var ett kommunikationssystem för helautomatisk överföring av telex via kortvågsradio mellan fartygsradiostationer till sjöss, och telexabonnenter i land, framtaget av svenska Televerket.

Tidig historia

Då telex under 1960-talet blivit en vanlig kommunikationsmetod på land, uppstod problemet att överföra telexmeddelanden till fartyg. För att få global täckning för ett helautomatiskt system då satellitkommunikation inte var utvecklad, krävdes ett system för kortvågsradio som tog hänsyn till olika problem på frekvensbandet, t.ex fading (periodiska variationer i signalstyrkan), samt olika jonosfäriska förhållanden.

Svenska Televerket utförde prov tillsammans med Salénrederierna på passagerarfärjan M/S Tor Hollandia i Nordsjön, och tankfartyget T/T Sea Sovereign på resor Persiska viken – Japan under 1969 och testade telexkommunikation med kustradiostationen Göteborg radio, där landterminalen var belägen. Dessa prov ansågs lyckade och i mitten av 1972 öppnade Televerket sin maritima telextjänst Maritex för kommersiell drift.

Fartygsradiostation på biltransportfartyget Madame Butterfly1986. Maritex-systemet med ARQ och mottagare finns i lådan i högerkant vid telexterminalen.

Fartygsstationen i Maritex-systemet bestod av en felkorrigerande styrdator kallad ARQ (Automatic ReQuest unit), och en egen Maritex-mottagare som sökte av (eng. scanning) valda frekvensband för att ta emot anrop. Dessutom fanns koppling mellan ARQ:n och fartygets huvudsändare, samt en telexterminal.

SIPU3-sid9

Då ARQ:n upptäckte ett anrop från landstationen via sin mottagare,   startades fartygssändaren automatiskt och besvarade anropet.[2]  När förbindelsen upprättats togs meddelandet emot. Det skedde genom att landstationen sände tre tecken i taget, och om fartygsstationen bekräftade rätt mottagna tecken sändes tre till. Var fartygsstationens mottagna tecken fel, sändes de tre sista tecknen om igen o.s.v. Trafik från fartyg till landstation skedde på motsvarande sätt, efter att personal ombord först tagit kontakt med landstationens sändare med en knapptryckning på ARQ-enheten. Landstationen kunde även skicka telex som gruppsändning, då med en enklare felkorrigering som inte krävde omfrågning. T.ex. skickades den dagliga sammanställningen av TT-nyheter “SAX-presset” till alla fartyg i svenska handelsflottan, även via Maritex. Om en sådan utsändning drabbades av störningar tappades  oftast  informationen.

Maritex-systemets landstation (Göteborg radio/SAG)

Eftersom landstationen måste handskas med många samtidiga fartygsanslutningar fanns här en sändare/mottagare/ARQ-enhet på vardera av systemets radiokanaler. När en telexabonnent i land skickade till fartygsabonnent svarade landstationsdatorn och tog emot meddelandet. Därefter valdes en lämplig radiokanal, fartyget anropades och meddelandet överfördes. En teknik som kallas store-and-for ward. Trafik från fartygsabonnent skedde på motsvarande sätt då det via radio mottagna meddelandet lagrades hos landstationen, för vidare distribution på telex-landlinje. Maritex-systemets landstation var också direkt förbunden med telexcentralen ATESTO (Automatic Telegraph Exchange for Stockholm’s Telegraph Office) för snabbare handläggning av telex-meddelanden.

Om avsändare eller mottagare i land inte hade telex, kunde fartygsbesättningarna ändå använda fartygets Maritex-utrustning. Dels genom att skicka Maritex-brev, vilket innebar att korta Maritex-meddelanden inklusive postadress skickades från fartyget till Maritex-expeditionen på Göteborg radio och postades därifrån. Dessutom kunde avsändare i land skicka Fono-Maritex vilket innebar att man via telefon till Maritex- expeditionen angav texten i meddelandet, vilket därefter matades in i Maritex-systemet för vidare befordran till fartyget. På grund av kortvågens skiftande förutsättningar varierade framkomligheten till fartygen. 1980 visade statistiken att 80 procent av Maritexmeddelandena nådde fartygen inom två timmar, 50 procent inom 30 minuter.

Maritex i satellitåldern

Fartygsabonnenter fanns inte bara i Sverige, 1983 slöts ett nordiskt avtal om samnyttjande av Maritex-systemet, och 1986 öppnades den första utomeuropeiska fjärrstyrda understationen i Panama.

Ytterligare fjärrstyrda understationer startades efter hand, en på Filippinerna 1990, en i Argentina 1992, två i USA 1995 samt en i Kina 1996. Maritex-systemet upphörde den 31 december 2000.

Som mest fanns det 2 800 terminaler installerade på fartyg, och omsättningen var 400 miljoner kronor under de 30 år som Maritex funnits.

————-

Denna artikel om svensk fartygshistoria har jag hämtat från Wikipedia. Den överensstämmer med det jag själv varit med om i under de 40 år jag arbetat med fartygsradio för Telia och som jag har skrivit om i olika artiklar.

Denna sammanställning är mer komplett så jag har valt att redigera den för Audionen.

 Rolf Claesson områdesansvarig för Fartygsradio

 

Bokmässan blev en succé

Bokmässan-21-600_redigerad-1Bokm_logo

 

För första gången sedan 1998 deltog Radiomuseet i den årliga bokmässan. Intresset var mycket stort och vi som stod i montern fick mycket att göra med att berätta för besökarna att det finns ett radiomuseum i Göteborg och var detta är beläget. Vi bjöd in folk att besöka museet för halva priset och på den inbjudan fanns även en liten karta över vad museet är beläget. Huvudnumren i vår monter var TV-mottagaren från 1957 med 17 tums bildrör som visade konståkning och Philipsradion från 1933 som återgav en egenproducerad mellanvågssändning som togs emot från Bo Sörenssons radiosändare. Vi hade även med en DAB-radio för att informera om att FM-radion kommer att ersättas om knappt tio år men intresset för detta var inte så stort ännu.

Vi fick massor av kontakter och t.o.m. några nya medlemmar så nu har styrelsen anmält att vi vill delta i Bokmässan även nästa år.   

 

 

RaRi Riks typ L en presentation av en udda svensk radio

av Anders Söderström.

Det här är på sätt och vis ett försök till att skapa en svensk folkmottagare och
omständigheterna kring dess tillblivelse är egentligen intressantare än radion i sig själv.
I tidigare artiklar i Audionen har jag både skrivit om striderna om radiopatenten och om
radiotillverkaren Miko. Där stöter man också på Vasa Radio och koncernens ägare köpman Gunnar Olsson. Efter att Vasa och ett flertal andra radiofirmor under hans kontroll hade försatts i konkurs, genomfördes utförsäljning av varulager genom AB Förenade Inkassobyråer, som han av allt att döma också var ägare till.

För att kunna fortsätta tillverkning av radio på ett sätt som inte skulle vara lika lätt att
komma åt för patenttrusten, som ett vanligt aktiebolag, grundades i stället en förening.
”Radioägarnas Riksförening u.p.a.” Den sista förkortningen är viktig i sammanhanget
då ”utan personligt ansvar” gav andra möjligheter än en vanlig firma att hålla juridiskt
och ekonomiskt ansvar från enskilda personer utan att det fordrade någon kapitalinsats.
Jag har kommit över ytterligare en del prislistor bl.a. från nämnda förening, sen jag skrev de tidigare artiklarna. Mot en medlemsavgift i föreningen erhöll radioköpare rabatter vid inköp av mottagare och tillbehör. Föreningen tillverkade och sålde också, enligt uppgift till självkostnadspris, mottagaren RaRi Riks.

Tyvärr så har jag inte något reklamblad för apparaten, men den presenteras i tidningen
Svensk Radio-Revy nr 1 1936. Tidningen gavs av allt att döma ut av samma person som
stod bakom Radioägarnas Riksförening, nämligen Gunnar Olsson. Den presenteras i
redaktionell text som den enda radioapparaten för under hundra kronor. Det finns både
växel-, likströms- och batteriversioner av den och priset var verkligen lågt. Endast 65
kronor.

Nu äntligen till själva radioapparaten, som tekniskt är mycket primitiv för sin tid.
Tyvärr så har en del reparationer och också modifieringar gjorts på mitt ex under årens
lopp. Det sitter flera 70-tals elektrolytkondensatorer under chassiet och även en kiseldiod, som definitivt inte varit där från början, och det är tänkbart att även andra komponenter bytts ut eller lagts till. Det är från början en likströmsapparat, som uppenbarligen gjorts om för växelströmsdrift någon gång under 1970-80-talen skulle jag tro. Det går emellertid fortfarande att konstatera att det är en rak mottagare med två amerikanska rör: 43 och 6C6. Det förstnämnda är slutröret och det senare används som detektorrör. Radion saknar helt en skala för att kontrollera stationsinställning och det är uppenbart att den endast är avsedd som lokalmottagare. Vänstra ratten manövererar strömbrytaren och en enkel vridkondensator för avstämning. Den högra är kopplad till en variometerspole för återkopplingen.

RaRi riks L front
Radion sedd framifrån
RaRi Riks L openback
Radion sedd bakifrån
RaRi riks L under chassie
Radion sedd underifrån

 

RaRi Riks L skylt
Skylt till radion

Ett antal åtgärder har vidtagits för att hålla tillverknings-kostnaden nere. Det mest framträdande är ju att den saknar stationsskala. Därmed har man kunnat använda en billig vridkondensator i pertinax, utan någon som helst utväxling och skalbelysning slapp man också sörja för. Endast ett våglängds-område ger även det en besparing. Den har inte heller någon spänningsomkopplare. Kunden fick uppge önskad spänning vid köpet och fick då en mottagare endast avsedd för exempelvis, som i det här fallet, 220 Volt likström.  Däremot innehåller den en permanent dynamisk högtalare av hygglig kvalitet, men det är lite osäkert huruvida den är original eller utbytt senare. Jag ger mig inte på att provköra den, men törs nog säga att man inte skulle vänta sig för mycket av den om man inte bodde nära en stark sändare.

Radioägarnas Riksförening försattes sedemera, även den, i konkurs. Liksom tidigare sköttes konkursutförsäljningen av, ja du gissar rätt, AB Förenade Inkassobyråer. Jag har en prislista från Radioägarnas Riksförening, liksom tidningarna Svensk Radio-Revy. Därtill har jag en utförsäljningslista från AB Förenade Inkassobyråers  Konkursförsäljningsavdelning. Det finns många likheter dem emellan: De saluför
radiomottagare av ett stort antal märken. De av kända och stora märken är i princip alltid någon och oftast flera säsonger gamla och i sannolikt små antal, medan det finns både fullt moderna och tidigare säsongers restmodeller av Miko, Vasa, Föra, Tunix, mm av allt att döma i större mängder. I konkurslistan hittar jag också RaRi. Nu kostar den 52:50 i det utförande jag äger. Det finns också en specialversion för 82:50, som faktiskt har en skala Radion sedd framifrån Radion sedd bakifrån  å fronten. Baksidan med beställningsblanketten saknas och därmed också uppgift om tryckår, men sannolikt är listan från 1937.

Det här är ingen vanlig radiomodell. Sannolikt är det ytterst få svenskar som sett ett exemplar av den och jag tror inte det finns särskilt många bevarade exemplar.  Ambitionen var att skapa en svensk folkmottagare och den salufördes också under det epitetet. Det skulle förstås vara intressant att veta mer om Gunnar Olsson och turerna kring hans företag och föreningen. Vad hände till exempel med inbetalade medlemsavgifter efter konkursen? Var Gunnar Olsson en skumraskperson eller en kämpande idealist mot patenttrusten? Det får vi inga svar på nu. Jag får sluta med
att konstatera att RaRi, som var tänkt att bli en svensk folkmottagare, bara blev en udda kuriositet i svensk radioproduktion.

Tidningsnotiser från 1920-talet

1924 var året då rundradion slog igenom i Sverige. Hur spreds nyheter, intresset och kunskaper om det nya mediet? Man kan få en viss inblick i hur det gick till i en
landsortsstad genom att läsa vad som skrevs i stadens tidningar. Östergötlands Folkblad,
socialdemokratisk, inte särskilt rik men vitt spridd, var på 1920-talet en av Norrköpings
många (nåja) tidningar. Vad som i Ö.F. från den här tiden har avhandlats, finns att begrunda, tack vare att tidningen har deponerat ett stort antal äldre lägg hos
Norrköpings Föreningsarkiv (www.nfarkiv.se).

Rundradion var inte det enda som fick genomslag 1924, bilismen blommade
upp och siffran för trafikdödade det året var av samma storleksordning som under år
2012, men gav inte större rubriker. De stora artiklarna under åren 1923-1925 rörde,
som man kan förvänta sig, stora saker som situationen i Tyskland där det inträffade att
människor svalt ihjäl och inflationen gjorde pengarna värdelösa, Hitler misslyckades
med sin statskupp och staten, sådan den nu var, försökte betala av på krigsskadeståndet
genom att bygga zeppelinare. Sverige fick sin första socialdemokratiska regering,
ans lagen till försvaret blev en stridsfråga och Hjalmar Branting avled.

Vi plockar notiser ur tidningen från juli 1923 till juni 1925 av det som befunnits
vara av radiointresse för att lägga in det som utfyllnad i Audionen.

Stig A Comstedt/ Sven Persson

annonsaftonunderhållning-8-t           annons1-8-t

NÄR TV KOM TILL GÖTEBORG

Lars-Inge Bäckström minns.

Vid årsskiftet 1954-55 var vi på TV 5 teknologer som gjorde ett examensarbete på
Chalmers. Uppgiften var att ta emot TV-bilder från Köpenhamn. Där fanns en sändare på 400 Watts effekt (som jämförelse kan nämnas att Göteborgs TV-sändare idag har 60.000 W effekt). På Råö-observatoriet 200 km från Köpenhamn byggde vi upp ett antennsystem och en känslig förstärkaranläggning. Denna utrustning matade en TV-mottagare. Bildkvaliteten var efter dagens mått ej godtagbar, men med hänsyn till avstånd och sändareffekt var vi nöjda. Ett mycket stort antennsystem planerades men blev aldrig verklighet. Detta skulle sannolikt givit godtagbar kvalitet även med dagens krav.

I Göteborg hade bildats en televisionsnämnd med representanter från Göteborgs stad,
Televerket, Radiotjänst och Chalmers. Nämnden ordnade en TV-sändare som lån från Philips. AGA och Radiola bidrog med filmscanner och annan utrustning. Jag fick åka till Philips i Holland for att lära mig sändaren vi skulle få till Göteborg. Sändaren installerades i en av byggnaderna på Chalmers och antennen monterades upp i en 30 meters mast som redan fanns på området. En dag kom Nils Dahlbeck på besök och med sig hade han den nye radiochefen Olof Rydbeck. Denne ville vid sitt besök i Göteborg se vad hans namne professor Olof Rydbeck på Chalmers höll på med i TV-sammanhang.

Första bilden var i luften den 16 oktober 1955 kl. 02.51. Justeringsarbetena fortsatte
och den 18 november kunde man läsa i Göteborgspressen: “Kalle Anka syntes på TVskärmen i går kväll och han hördes också”. Därmed hade Goteborgs TV tagit sitt första steg framåt.

Vi sände testbild och filmer. Trots att vi annonserade programmen i pressen, hände det
att tittare ringde och frågade om vi inte kunde sända filmen i repris, eftersom de missat
hela eller delar av programmet. Ofta tillmötesgick vi deras önskan och sände filmen igen
samma kväll efter programmets slut. Det kan man kalla snabbrepris. Jag kommer särskilt ihåg juldagen 1955. Jag skulle sända filmen Himlaspelet på eftermiddagen. Alldeles innan programstarten brann en transformator i scannern och vi hade ingen reserv, utan det var bara att dra upp mikrofonregeln, ta mikrofonen och gå ut på yttertrappan och i fria luften annonsera, att det inte blev någon sändning. Fläktarna i sändarstationen störde så man måste stå utomhus. Sven Rahmn, då chef på Televerkets radioexpedition, ringde för att höra vad det var för fel. Han ordnade en man från Televerket som lindade om transformatorn och på annandagen kunde vi sända igen.
Vid ett tillfälle lånade vi en vidikonkamera från professor Wallmans institution och
den kvällen kunde Gerd Edwars “live”-annonsera:”Här är TV Göteborg från Chalmers.
Kvällens program ….”. Vi sände en programserie “Vem vet var?”. Det var Anders Bothén och Evert Lindgren som i sju program visade bilder med motiv från Göteborg beledsagade av text och musik. Det gällde för tittarna att känna igen motiven. Vinnarna från de skilda programmen möttes i en final, direktsänd med kamera lånad av Chalmers. Första pris i denna final var en TV-mottagare. Sändningen gick från den nyinredda studion i “Röda ladan”, en liten byggnad som låg intill sändarstationen, och som Radiotjänst köpt och inrett med studio och kontrollrum. Detta var Radiotjänsts andra egna fastighet, den första var en liten barack på A1 i Stockholm.

Från början drevs försöksändningarna i Chalmers regi, men Radiotjänst tog över
programverksamheten i januari 1956. Nisse Dahlbeck efterträdde Sven Olving som
programansvarig. Utrustningen kompletterades med perfobandspelare och en
textscanner, så vi kunde sända textade filmer.

I februari 1956 kom ett danskt OB-team till Göteborg för att sända en handbollslandskamp i Mässhallen till Kopenhamn. Radiotjänst skickade ner länkutrustning, så vi kunde länka över programmet för återutsändning över Chalmerssändaren. Bo Orelov var med från Stockholm vid denna överforing och stannade sedan kvar som Radiotjänsts förste TV-tekniker i Goteborg. Vi andra som arbetade har var antingen anställda av Chalmers, Televerket eller Filmfonden, samma fond som finansierat TV-starten på Tekniska Högskolan i Stockholm.

Med Hans Werthén som drivande kraft började vi göra prov med mottagning av dansk
TV i Grimeton, Varberg. I en av de 127 meter höga masterna monterades en
mottagarutrustning och efter intensivt arbete lyckades man avstöra alla sändarna i
Grimetonstationen så vi fick en störningsfri bild från Köpenhamn. Denna bild länkades
sedan till Chalmers. Göteborg hade tillgång till Eurovisionen. Vi gjorde även prov med
mottagning av Nackasändaren via s k “Ballempfang” på Omberg, i Kilsbergen och i
Kolmården.

I avvaktan på att den permanenta länken skulle bli klar byggde Radiotjänst sommaren
1957 en provisorisk länkkedja till Göteborg från Norrkoping, där man tog in Nackasändaren. Det var Arne Sanfridsson som med hjälp av bland andra Jan-Erik Carlstrand och Roland Önesand gjorde detta bygge. Janne och Roj hade sedan serviceansvaret för länkutrustningen mellan Vättern och Göteborg. De var ständigt på resa för att trimma utrustningen och laga fel, bland annat orsakade av åska.
Nu hade vi både Eurovisionen och Stockholms-TV som vi kompletterade med egna
program. Vi hade fått en kamera och vi producerade barnprogram, Skol-TV, Hemmakväll,
Fatilarkalkyl mm. Behövde vi hjälp med rekvisita, vände vi oss till Stadsteatern. Där
arbetade Alvar Bernhardson och han ställde upp till vår hjälp. Allan Moberg hade flyttat
ner hit och han hade med sig filmkamera och klippbord. Invigningen av länken till
Göteborg gjordes med programmet “Klart Göteborg”. Ljudtekniker för detta program,
som sändes från Stockholm, var Thorsten Ericson. Länken var från början enkelriktad
men gjordes senare vändbar och blev slutligen dubbelriktad.

I GT den 18 december 1957 kunde man tryckt i fetstil läsa: “Goteborgs TV nedläggs”.
Länken fran Stockholm var då så driftsäker att man ansåg att det inte fanns anledning att producera egna program i Göteborg. Sveriges Radio avsåg att skaffa utökade tekniska möjligheter i Göteborg, men tidsplanen var ej klar. Filmproduktion skulle göras i Göteborg och sändas i rikstelevisionen från Stockholm (Radiotjänst hade just bytt namn till Sveriges Radio vid bolagsstämman den 23 oktober 1957).

Synvillan

Synvillan i Göteborg

tevehuset 2009
Radiohuset iGöteborg 2009

Det finns mycket att berätta från de första åren av Göteborgs-TV, och detta är bara några axplock. Hösten 1958 anställdes första liveteamet i Göteborg och efter utbildning flyttade man in i provisoriska lokaler pa Svenska Mässan i väntan på att första etappen av “Synvillan” skulle bli inflyttningsklar i februari 1959. Det blev således ingen långvarig nedläggning av TV i Göteborg.

(Detta ar alltså skrivet av Lars-lnge Bäckström. En självupplevd berättelse är bättre än något annat).

Personalen i Göteborg vid TV-starten hösten 1958.

Ledare Lennart Holmberg
Kameramän Ebbe Friman, Leif Hansson-Holtelius, Lars Olsson
Kamerakontroll Stig Arkhammar, lngemar Arvidsson
Ljud K W Pettersson, lngvar Pettersson
Belysning Conny Kingfors
Elektriker Nils Olof Carlsson
Underhåll Gunnar Andersson, Jan-Erik Carlstrand, Bo Orelöv
Biträde Bertil Johansson, Erik Söderman, Rune Levin
Ateljé Lennart Carlzon, Lennart Sandelin
Fotograf Allan Moberg

(Lars-Inge Bäckström arbetade då i Stockholm, men anställdes redan i april 1958).

NÅGRA DATA OM TV I GÖTEBORG

Sammanställd av Matts Brunnegård

NÅGRA HISTORISKA DATUM

16/10 1955 Första bilden ut över sändaren på Chalmers.
12/12 1955 Första levande bild sändes (hallå) med vidikonkamera lånad av Chalmers.
17/5 1956 Länkförbindelsen Grimeton-Göteborg klar, kallad Hahrsprånget.
3/9 1956 Tas denna länkförbindelse i bruk.

Några av de program som överfordes från Danmark via Grimeton:
25/12 1956 Figaros bröllop.
31/12 1956 Nyårshälsningar från Europa.
3/2 1957 Vintersport från Garmisch.
9/2 1957 Sångfestival från San Remo.

17/8 1957 Första bild över provisoriska länken från Stockholm.
28/8 1957 Börjar regelbundna överföringar via denna förbindelse.
30/9 1957 Invigningsprogrammet “Klart Göteborg”.
23/5 1958 Öppnas Göteborgs permanenta sändare liksom den permanenta
förbindelsen från Stockholm.
Hösten 1958 Används en provisorisk studio i Svenska Mässan.
30/l 1959 Invigs “Synvillan”.
14/9 1970 lnflyttning i nya, permanenta huset på Delsjövägen.
30/9 1971 Det nya huset invigs.

Fartygs- och flygtrafik i realtid

Under områden har ett nytt område Flygradio tillkommit. Där finns ingen information ännu, men där finns en länk till en sida där man kan se flygtrafiken över Västra Götaland i realtid. På motsvarande sätt finns det nu under fartygsradio en länk till en sida där man kan se fartygstrafiken i Göteborgs inlopp i realtid (om Anchored avmarkeras, så ser man tydligare de fartyg som är på väg).

Torslandaminnen

av Bertil Bengtsson

Hur jag började min karriär på Torslanda flygplats som teletekniker på RMS

Sedan en tidigare anställning på ett företag som hette Scienta lärde jag känna en tekniker som hette Egon Helgesson, han var en snäll och hjälpsam person, han hade just avslutat sin anställning när jag anställdes på Scienta och en dag träffade jag Egon på Färjenäsfärjan som jag åkte med varje dag med mitt transportmedel moped.

Han hade fått jobb på Torslanda flygplats som teletekniker, alltså i det stora trygga Televerket, som extra tjänsteman. Jag blev väldigt intresserad, och frågade om dom inte  behövde någon mer tekniker, jo visst vi söker en tekniker till, jag ringde en ingenjör på  Televerkets Radioexpedition som låg på Vallgatan i Göteborg, han hette Ulf Gunnarsson. Vi bestämde om en intervju, han satt högst upp på vindsvåningen på Vallgatan 9, minns jag. Han var en lång kraftig skåning, han hade en grå trenchcoat och brun hatt om jag minns rätt. Han frågade om jag gjort min värnplikt, tyvärr så skall jag rycka in nästa år sa jag, “ja men då är Bengtsson välkommen tillbaka då, så skall jag se om det finns möjlighet för Bengtsson att få börja på Torslanda”. Jag blev överraskad över detta positiva svar. En dag tog jag ledigt från mitt jobb, och åkte ut till Torslanda flygplats och hälsade på Egon Helgesson. Vi åkte ut på en av landningsbanorna, han skulle avhjälpa något fel på ILS:en om jag kommer ihåg rätt, detta var i mars månad, blött och slaskigt var det. Nu blev jag verkligen övertygad om att i denna verksamhet ville jag arbeta, att få arbeta på en flygplats, flygintresserad som jag var, samt med amatörradio som hobby. Kan nämna i sammanhanget att mitt amatörradiocertifikat som jag fått när jag gjort min värnplikt som radio-telegrafist i signaltrupperna gällde som merit vid anställningen i Televerket.

Efter värnpliktstjänstgöringen

aal2-Assmanrec
4-kanals ASSMANNbandspelare

Jag tror det var den 20 mars 1959, som jag ”muckade” det var tidig morgon på S2 Göta signalbataljon i Skövde och vi kunde inom kasernområdet återigen ta på oss våra civila kläder, som var strängt förbjudet att bära inom kasernområdet.

Så tåget hem till Göteborg, och framme i hemmet i Frölundaborg, när brevbäraren kom med ett brunt kuvert med Televerkets logga på, jag slet upp kuvertet, B-certifikatet låg klart i kuvertet. Bara att köra igång stationen som länge stått klar för användning.

Nu blev det en intensiv tid framför radion med många kontakter på kortvågen 40- och 80 metersbandet.

Nu började jag återigen att jobba på Scienta (elektronikfabrik med produkter till Försvaret) fram till mars 1960, då jag sa tack och farväl för gott, när jag fått den efterlängtade teknikertjänsten på Torslanda flygplats. (titel i Televerket var extra tjänsteman med lönegraden Ag 7) Den 1 mars 1960 kl. 07.00 intällde jag mej i stationsbyggnaden på andra våningen och välkomnades av chefen Nils Hansson. Televerket hade sina lokaler strax under tornet, ganska trångt var det , jag minns att Nils Hansson satt med sitt skrivbord mellan två stora bandspelarskåp, och vi hade en liten verkstad vägg i vägg med SMHI:s lokaler mot stationsplattan.

En teleteknikers uppgift på Torslanda

Underhåll och felavhjälpning på kommunikationsutrustningar, navigationsanläggningar, radarutrustningar, intern TV.

Första tiden blev det mycket nytt att lära sej, framförallt att hitta och finna vägen fram till de olika radiostationerna.

Första tiden fick jag följa med en redan erfaren tekniker på olika radiostationer, det var Skara VOR (SKA), Skara NDB (SIU), Munka NDB (SIG), Brevik NDB (BR), Sandvik locatorfyr (S), Lilleby locator (T), Nolvik VOR (NOL),

Alleby locator (OG) , på Lilleby och Alleby fanns också markerfyrar på 75 MHz som skulle göras tillsyn på.

Sen var det ILS-anläggningen på bana 04 – 22 som skulle kontrolleras en gång i veckan. Fabrikat på ILS var Standard Radio. Den bestod av en glidbanesändare GP samt en kurssändare LLZ, frekvensområde 330 MHz samt 110 MHz respektive.

Hur jag fick mitt körkort

Eftersom körkort var ett krav för att få jobbet, men genom ett förbigående från radiokontorets sida, hade dom inte frågat om jag hade körkort, så jag fick order från en sträng kamrér på Televerket som hette Lars Lindblom, han gick alltid klädd i mörkblå kostym och hade blå slips med vita prickar, rökte som en skorsten, jag blev inkallad till hans kontor på Vallgatan och fick en rekvisition och fick anmäla mej till Durgees bilskola inne i Göteborg. Minns att jag fick övningsköra med en Volvo PV444 i Allén, Avenyen, Korsvägen, alltså de värsta ställen för att börja övningsköra på.

Första uppkörningen blev jag ej godkänd på, men andra gick bra, jag kan väl säga så här i efterhand att jag körde ensam med tjänstebilen Volvo Duett utan körkort på Torslandafältet.

En och annan körning till Torslanda radarstation blev det också. Men mitt körkort fick jag helt gratis från Televerket.

Mätutrustning

aal5-ILSmätNH
Nils Hansson mäter på ILS bana 22

Mätutrustningen vi hade till förfogande var ganska bristfällig. Den bestod av några Simpson universal mätinstrument (Simpa) samt en Philips volt/ohmmätare, en rishög till oscilloskop av märket Philips, samt en LFtongenerator Philips.

Som kontrollmottagare för långvågsradiofyrar hade vi en surplus BC348 mottagare (satt i B-17 och B-24 US airforce)

Det fanns även en kontrollmottagare för ILS tillverkad av Standard Radio.

Kortvågssändarstation

Det fanns en Wilcox kortvågssändare nere vid den s.k. sjöstugan nära den s.k. slipen sjöflygangöringsbrygga), med 500 watts effekt, den hade frekvensen 3420 Khz, och var reserv för Valldasändaren som sände metreport s.k. VOLMET varje halvtimma.

aal10-kv-tKommer ihåg en gång när jag hade s.k. jourtjänst, en varm sommardag, jag fick en felanmälan om att Wilcoxsändaren inte gick att sända med. Jag hade bara sett sändaren ett par gånger, och var ensam i tjänst. Jag tog den gula tjänstebilen Volvo Duett och åkte ut till sändarhuset. Jag slog av spänningar till sändaren som hade högspänning på 2500 volt, rent livsfarligt alltså. Kollade säkringar, men till slut fick jag igång sändaren, det var någon kontaktor som ej slog till ordentligt.

Jag meddelade flygledartornet via VHF-radion på 121,90 Mhz ”Torslandatornet från SHD” flygledaren tog emot mitt meddelande och ringde sedan vidare till radioexpeditören på kortvågsexpeditionen.

aal8-SjöstuganTXstn

VHF mottagarstation

På berget ovanför den gamla stationsbyggnaden låg VHF-mottagarstation, enda vägen dit upp på den tiden var att gå en ganska brant väg, och vi var varje gång tvungna att bära med oss en tung signalgenerator av märket Advance, ostabil var den också, så det första man fick göra var att koppla in spänningen på den och värma upp den, så att den inte drev iväg alltför mycket i frekvens, när man skulle mäta på VHF-mottagarna.

Mottagarna var av märket Standard Radio, och bestyckade med rör, så för att få upp känsligheten, var det ibland nödvändigt att byta ett och annat rör, bl.a. massor av röret 6AK5.

Marconi VHF-pejl
Marconi VHF-pejl

 Teletekniska avdelningen i stationsbyggnaden

På andra våningen i stationsbyggnaden mot den östra sidan låg radiostationen, den var bemannad dygnet runt av en radiotelegrafist, men då var morsetelegrafin avskaffad, men telefoni på kortvåg kördes de första åren jag arbetade där.

Metreport VOLMET, sändes också därifrån varje halvtimma, moduleringslinjen gick via en s.k. reläbestyckad ”Valldamanöver” via telelinje till en kortvågssändare i Vallda (Göteborg Radio SAG)

Mottagarna var två stycken av märket Hammarlund SP600 JX, som satt monterade i en rack inne på radiostationen.

Ett par gånger gjorde jag översyn på en sådan mottagare, vilket var en dröm för en intresserad ung radioamatör som jag var.

I rummet intill låg fikarum/f.d. pejlrummet för långvågspejl, mottagaren var en stor mottagare av franskt fabrikat, den stod på dygnet om med någon rundradiostation inställd.

Till denna långvågspejl var kopplat en s.k. Adcock pejlantenn, den bestod av fyra höga trästolpar som stod ute i viken vid Karholmen, jag fick följa med en televerksreparatör en gång när masterna skulle målas, vi fick ro ut i en roddbåt för att komma åt masterna. Detta var naturligtvis under sommaren som detta arbete gjordes. Sen gick det fyra grova stålarmerade koaxialkablar in till pejlmottagaren. Vid den tiden hade redan långvågspejling som landningshjälpmedel enl. den s.k. ZZ-metoden upphört. I rummet intill fikarummet fanns den s.k. telexcentralen med ett antal telexmaskiner som stod och tickade fram telegram, färdplaner, metreports, osv.

Där arbetade ett antal yngre snygga flickor/damer som tilldrog sej ett visst intresse från oss yngre tekniker, så oftast satt man och fikade tillsammans med dessa trevliga flickor.

Nästa rum intill låg ”Briefing” där piloterna lämnade in färdplaneringen inför flygningen. I rummet intill residerade chefen för trafikledningen den kände flygarprofilen Bertil Brunnerup.

Adcock-pejl i stationsbyggnaden
Adcock-pejl i stationsbyggnaden

Sen fanns det en korridor som bl.a. ledde till SMHI:s lokaler, där var en annan profil som jag lärde känna mycket bra, han kallades för ”Gustav Adolf ” han var skåning, till att börja med verkade han en aning vrång, men sen jag lärt känna honom var han en trevlig man att prata med, han var mycket skicklig på teknik i väderinstrumentsammanhang och kom ofta till oss när han behövde hjälp med något tekniskt problem. SMHI hade i sina lokaler långvågsmottagare som tog emot väderkartor på fax, det fanns även en faxmaskin som via telefonlinje, ritade upp väderkartor på ett stort papper som var fuktigt när det rullades ut i faxmaskinen.

Nytt flygledartorn på Torslanda flygplats

År 1969 i september drog en orkan in över västkusten, vilken drabbade Torslanda mycket hårt, dagen innan hade det nya flygledartornet precis tagits i bruk, och av någon anledning hade de nya stora snedställda glasrutorna bara provisoriskt satts fast i sina ramar, detta fick till följd att vindtrycket från sydväst tryckte in glasrutorna, vilka hamnade i form av små fyrkantiga glasbitar på golvet i översta delen av flygledartornet. Det blev fritt fram för vinden och saltet från havet, som lade sig som ett par millimeters tjockt lager av salt på alla nya telepaneler. Tjänstgörande flygledare fick fly undan i panik, och återbemanna det gamla flygledartornet igen, och som tur var kunde det provisoriskt tas i bruk igen.

Men inte nog med det, ett kamerahus som stod ovanför brandstationen och hade kameror som var riktade mot bana 14-32 (Amhult), och som kunde fjärrmanövreras från tornet, blåste omkull fullständigt och blev till en hög med kaffeved. Nästan alla långvågsfyrar blev utslagna på grund av strömavbrott och saltavlagring på antennerna.

Vi tekniker fick hela dygnet åka runt på långvågsfyrarna och försöka tvätta bort saltet så gott det gick, och i de flesta fallen fanns ingen nätspänning fram till stationen p.g.a. av salt på transformatorstationernas isolatorer. Man kunde se vilka fyrverkerier det blev när det hela tiden slog över i porslinsisolatorerna på transformatorstationerna.

Radar på Torslanda flygplats

1961 påbörjades installation av en ny radar för flygledningsbruk, av fabrikat Decca radar- displayutrustningen ställdes upp i ett ganska stort rum på andra våningen i den s.k. gula hangaren, där även kontrollcentralen för flygledningen låg vägg i vägg.

Själva utrustningen bestod av två rader mörkgråa apparatskåp, allt var rörbestyckat, stora ventilationsrör ledde ut värmen i skåpen till ventilationssystemet.

Inne på kontrollcentralen var uppställt fyra radarpositioner med s.k. PPI (planpolär indikator), som bestod av ett runt bildrör med tillhörande elektronik inne i radarskåpet.

Varje morgon skulle denna utrustning kontrolleras, kalibreras och eventuellt rör bytas, det var ett antal hundra rör som försåg PPI:erna med rätt tidsintervall, avståndsringar, rotationssynk, radarsignal från en lågbeam och en högbeam, osv.

Den första versionen av radarsändaren bestod av två magnetronsändare som gav ca: 500 kW pulseffekt i vardera, i en lågbeam och en högbeam.

I början på 1965 byttes radarsändaren ut mot två 2 MW (Megawatt pulseffekt) magnetronsändare, för att få bättre räckvidd ca: 100 nautiska mil, samt s.k. MTI-utrustning installerades, detta gjordes för att undertrycka fasta ekon i radarbilden, samt i viss mån filtrera bort molneko, regnskurar och annat oväsentligt som kunde uppträda på radarbilden.

Från mitten av 60-talet var kontrollcentralen förutom de civila flygledarna, bemannad av två flygvapenofficerare som ledde jaktflottiljen på F9, den benämndes Göta kontroll, verksamheten upphörde i samband med F9:s nedläggning som jaktflottilj i juni 1969.

Men när vi fick den första radarstationen på Torslanda blev det lite bättre instrument. Oscilloscope av märket Tektronix 310, AVO universalinstrument blev inköpt i samband med att den nya displayutrustningen för radar togs i bruk på KC.

aal14-f-t
Nya kontrollcentralen Torslanda
Torslanda radarstation 1965
Torslanda radarstation 1965

aal15-t
Torslanda radarstation 1965

PAR-radar på Torslanda

I slutet på 60-talet installerades en s.k. PAR, Precision Approach Radar, det är i princip en radar som sänder ut en vertikal och en horisontal radarstråle, samma princip som för ILS, en vertikal stråle där flygplanet leds in till en inflygningsvinkel på 3 grader, samt  horisontellt till centerlinjen på landningsbanan. Presentationen av radar ekona gavs på två skärmar typ 17” TV-bildrör, se bilden, således kunde trafikledaren prata ner flygplanet vid dålig sikt via radio och hela tiden kontrollera att flygplanet låg på rätt inflygning. VHF- frekvensen 118,5 Mhz användes för PAR-inflygning.

Inflygning med hjälp av Precision Approach Radar PAR
Inflygning med hjälp av Precision Approach Radar PAR

Ute på fältet var stationshuset placerat söder om bana 04 – 22 strax väster om glidbanehuset. Stationshuset var uppbyggt på en rund betongkonstruktion med en järnvägsräls ovanpå som gick runt hela betongfundamentet. I huset fanns ett antal motorer som kunde fjärrstyras, så att hela stationshuset kunde vridas runt 180 grader. Med denna konstruktion kunde PAR-inflygningar göras i båda banriktningarna 04-22 . Bromma hade en likadan PAR-radar som Torslanda, mej veterligen de enda som byggdes på svenska flygplatser. Kommer ej ihåg när PAR-radar togs ur bruk på Torslanda, men har för mej att det var i mitten på 70-talet.

 

Luftfartsradio kommunikation och navigering

I den civila luftfartens början på tjugo – och trettiotalet, sköttes kommunikationen med flygplanen på långvåg på frekvenser omkring 300 Khz radiotelegrafi med sändareffekter mellan 0,5 – 1 kW på markstationen.

Torslandas arbetsfrekvens var 333 Khz, och anropssignalen SED.

Det var Televerket som ägde markstationerna på dom större flygplatserna Bulltofta, Lindarängen, Bromma, Torslanda, Norrköping och Jönköping.

aal4-ILSantrwy22-sv-3-jJu större kraven ställdes på reguljära tidtabeller för luftfarten, desto viktigare blev radionavigeringen. Med dåtidens lägre hastigheter, bortåt 250 km/tim, och låga trafikintensitet, klarade man sig bra med en pejlmottagare i flygplanet, som telegrafisten ombord tog kryssbäringar med på de större rundradiostationerna på långvåg, eller på de särskilda härför uppsatta radiofyrar.

Reguljär flygning även i mörker fordrade emellertid natteffektfri radiopejling, vilket endast var möjligt från marken genom s.k. ”adcockpejl”. Flygplanet sände härvid långa ”streck” till markstationen som då pejlade flygplanets läge och telegraferade pejlvärdet upp till flygplanet.

Sådana adcockpejlar uppfördes av Televerket under senare delen av 30-talet i anslutning till markstationerna i Norrköping, Jönköping och Torslanda.

Vid samma tid infördes i Sverige på Bulltofta och Bromma såväl som på kontinenten och i England det första instrumentlandningssystemet på VHF, utvecklat av Lorenz Berlin, som blev föregångaren till det nuvarande internationellt standardiserade ILS (Instrument Landing System)

Under 2:a världskriget uppfördes markstationer för långvågstelegrafi på flygplatserna i Visby, Karlstad och Sundsvall/Härnösand. För att möta det nya kravet på kommunikation på längre avstånd dels med flygplan, dels inbördes mellan de största flygplatserna, utökades markstationerna på dessa med anläggningar för kortvågstelegrafi.

Samtidigt tillkom ett tjugotal radiofyrar i landet och adcockpejl på resterande flygplatser.

Under kriget hade de allierade byggt upp en flygtransportorganisation, som förband alla fem världsdelarna med ett nät av flygplatser,försedda med moderna , under kriget utformade hjälpmedel för radionavigering och radiokommunikation. De välkända flygplatserna Gander, Shannon och Prestwick på nordatlantrouten är exempel härpå.

Samtidigt skapades en lufttransportflotta av vanligen fyrmotoriga plan typ DC-4 , DC-6 etc. Dessa flygplan hade givetvis sin radioutrustning anpassad till flygvägarnas och flygplatsernas radiohjälpmedel.

Efter krigsåren fram till 1950, användes i stor utsräckning ”surplusutrustning”, med åtföljande förslitning från krigstiden.

Även ICAO:s rekommendationer kunde ej följas med surplusmatriel avseende vilka radionavigationssystem som skulle användas på internationella flygplatser och flygvägar. Bakom dessa överenskommelser döljer sig ibland bittra strider mellan amerikansk och engelsk industri.

VOR eller ”Gee”

Vid ICAO-mötet 1946 stod en hård strid om vilket system för kortdistansnavigering som skulle antagas. U.S.A:s med allriktade ultrakortvågsfyrar , s.k. VOR, eller det engelska ultrakorvågssystemet ”Gee”. Det blev VOR-systemet som segrade.

En sådan VOR-fyr ger i flygplanet automatiskt bäringen i grader räknat från norr till fyren i fråga. I Sverige installerades den första VOR-fyren i Västerljung (Trosa) 1956, för flygleden Stockholm – Malmö. För Torslandas del installerades den första VOR-fyren 1959 i Nolvik (Björlanda). Redan 1953 gjordes en provinstallation av VOR för inflygning till Bromma.

NDB

1938 kom den första NDB långvågsfyren på Gotland.

Det gamla navigationssystemet med radiokompass i flygplanet (ADF) och NDB lånvågsfyrar på marken, utvecklades betydligt under efterkrigstiden, inte minst sedan inrikesflyget startade med nya linjer, och det gällde att snabbt ordna navigeringsmöjligheter till och omkring nya flygplatser såsom Kalmar, Jönköping, Nordmaling och Kiruna. Men inrikesflyget hade ännu ej hunnit installera mottagarutrustning för VOR. Vid krigsslutet var det ca: 25 st. långvågsfyrar i bruk, och år 1958 67 st. Men från år 1961 utgjorde VOR-fyrar det primära navigationshjälpmedlet, och långvågsfyrar fick en sekundär funktion.

 

NDB sändare typ Standard Radio DT-50
NDB sändare typ Standard Radio DT-50
NDB Grebbestad på 70-talet
NDB Grebbestad på 70-talet

 

 

 

 

 

Från telegrafi på långvåg till telefoni på kortvåg och ultrakortvåg

Redan i slutet av 30-talet hade i U.S.A. det gamla önskemålet om direkt telefonikontakt realiserats mellan flygplanet och flygtrafikledningen på flygplatsen. Kontakten blev

snabbare än med telegrafi, och reservpilotenn kunde ersätta radiotelegrafisten, vars plats kunde disponeras för passagerare. Åtgärden medförde även en minskning av lönekostnaden både för flygbolagen och luftfartsverken, genom personalbesparing.

På våren 1944, då man anade ett slut på kriget, uppgjordes i Washington vissa riktlinjer för      ett kombinerat navigations- och kommunikationssystem, baserat på ultrakortvågs- och kortvågstelefoni. Detta projekt framfördes till diskussion på den första världskonferensen för civilflyget samma höst i Chicago. Till jämförelse kan nämnas som jag tidigare skrivit om, att i Europa fortfarande användes långvågstelegrafi för kommunikation, och ångvågspejling för navigation.

Chicago-konferensen skapade här en världsunion för civilflyget, numera kallad International Civil Aviation Organization (ICAO) Denna har i likhet med teleunionen organ för behandling även av tekniska frågor.

De sedan ICAO:s skapelse årligen återkommande tekniska konferenserna representerar bl.a. en fortgående utveckling av enhetliga, mera driftsekonomiska kommunikations och navigationssystem, passande för fredliga förhållanden.

Ultrakortvågstelefoni för trafik mellan flygkontrollcentraler och flygplanen efter luftlederna utgjorde en del av det önskade slutmålet. Ultrakortvågstelefoni var ju det enda alternativet för att erhålla störningsfri kommunikation. Få trodde emellertid, att detta skulle bli möjligt inom en snar framtid. För Europas del tillkom nämligen språksvårigheter av sådan karaktär, att tanken på att övergå till telefoni i internationell trafik på många håll möttes med betänkligheter, särskilt från den latinska språkgruppens sida. Efter kriget rådde dessutom i Europa stor brist på trådtelefonförbindelser, vilka är nödvändiga mellan flygkontrollcentraler och de radiotelefonistationer, som förmedlar radiotrafiken till flygplanen utefter luftlederna.

Manöverpanel för kortvågstelefoni 6440 KHz, under sitter en Hammarlund HQ-129X 16
Manöverpanel för kortvågstelefoni 6440 KHz, under sitter en Hammarlund HQ-129X 16

Sedan ICAO utarbetat och fastställt erforderliga normer och språkkoder för internationell radiotelefoni, sedan behovet av radiokanaler utefter de interkontinentala flygrouterna utretts och kanalerna fördelats internationellt, sedan dessutom radioindustrin utformat konstruktionerna för civilflygets behov samt trådtelefonförbindelser åter började bli disponibla, mognade tiden för en definitiv övergång till telefoni för den civila luftfarten. Över land skulle härvid kommunikation ske primärt på ultrakortvåg och sekundärt på kortvåg, över havet uteslutande på kortvåg. I Europa infördes detta system först i England år 1950. Sverige följde efter ett år senare, då ultrakortvågstelefonin genomfördes på luftlederna Stockholm – Malmö, Stockholm – Finland och Stockholm – Visby.

Luftleden Stockholm – Göteborg kom i drift med ultrakortvåg våren 1953, och lederna Malmö – Göteborg – Norge och Hallsberg – Norge fick ultrakortvågsdrift i slutet på 1953.

Införande av VHF (ultrakortvågstelefoni) för närtrafikledningen

VHF-utrustningarna för flygledartornen i Stockholm/Bromma, Göteborg/ Torslanda, Malmö/Bulltofta, Norrköping och Visby levererades av AB Standard Radiofabrik, sändaren gav en uteffekt av 50 watt, och mottagaren hade en nominell känslighet av 2 mV och installerades under åren 1948 – 1951. Under året 1953 installerades även VHF-utrustning i Sundsvall, Karlstad och Örebro.

Vid VHF-stationen som låg nära radarstationen, hade vi på 60-talet i drift rörsändare som nominellt skulle ge 50 watt bärvåg ut, men vid kontroll visade det sig att uteffekten hade sjunkit till 25-30 watt, trots nya rör och noggrann trimning gick det ej att uppnå 50 watt. Vid kontroll av anodspänningen som låg runt 600 volt, var denna endast runt 250-300 volt, det berodde på gamla ”trötta selénstaplar” som likriktare, jag fick i uppdrag att byta ut dessa mot kiseldioder i stället, ett antal dioder av typ Siemens BY250 köptes in, monterades på kopplingsplintar med sedvanliga skyddsmotstånd, och ett prov gjordes med effektmätare inkopplad, pang! effektmätaren slog nålen i botten, en 100 watts prob fick kopplas in, nu gick det att trimma upp sändaren till 80- 90 watt bärvågseffekt, men tror jag drog ner antennlinkskopplingen en smula för att ej bränna ner sändaren. Detta infördes på samliga likriktare på VHF-stationen.

I varje flygledartorn kunde ett flertal frekvenser betjänas, fem i de större tornen och fyra i de mindre tornen. Sändare och mottagare fjärrmanövrerades från expeditionsplatser i kontrolltornen. För Stockholm, Göteborg och Malmö skedde betjäningen från två av varandra oberoende expeditionsplatser. Ett lokalt signallampsystem för upptagetmarkering var anordnat på en manöverpanel i varje expeditionsplats för att förhindra att en och samma frekvens inkopplas på annan expeditionsplats samtidigt.

För varje frekvens fanns på panelen en signallampa som tändes när anrop gjordes på frekvensen. Sändare och mottagare var som regel placerade i stationshus placerade på ett avstånd av ca: 1 km sinsemellan i utkanten av flygfältet. Detta för att undvika störningar på intilliggande frekvenser. Frekvensområdet låg på den tiden mellan 118 – 132 MHz.

Alla mottagare och sändare var dubblerade- ordinarie och reserv, samt fanns det även en helt autonom sändare på 7 watt uteffekt som arbetade med batteridrift, under nätbortfall, denna var helt oberoende av manöverlinjen.

Distriktstrafikledning införs

I januari 1950 sammankallade dåvarande telegrafstyrelsen till ett möte, som avsåg att vara en förberedande diskussion av de problemkomplex, som var förbundna med en övergång till radiotelefoni för distriktstrafikledningarnas rörliga trafik. Distriktstrafikledningarna var fortfarande hänvisade till markstationens radioförbindelser på telegrafi, men ville givetvis snarast möjligt genom radiotelefoni få direktkontakt med flygplanen utefter luftlederna. Ett preliminärt förslag utarbetades av luftfartsstyrelsen och telegrafstyrelsen, vilket innebar anordnandet av ett antal VHF-stationer s.k. areastationer, i södra och mellersta Sverige jämte kortvågstelefoni som reserv och komplement.

Luftfartsstyrelsen föreskrev härvid bl.a. att kontinuerlig dubbelsidig radioförbindelse på VHF med distriktstrafikledningen skulle kunna upprätthållas vid flygning i luftled ned till en höjd av 600 meter över havet och vid flygning utanför luftled på ett avstånd av högst 70 km från luftleds mittlinje ned till en höjd av 900 meter över havet.

Vidare var det nödvändigt att placera radiostationerna utefter kabelstråk där ledningar med högsta driftsäkerhet fanns disponibla samt att om möjligt kombinera dessa stationer med televerkets anläggningar för att hålla kostnader nere.

Mätningar för placering av VHF-stationerna igångsattes hösten 1950. Härvid användes ett mindre flygplan, försett med VHF-utrustning. Man uppmätte på marken fältstyrkan från flygplanets sändare, medan planet i allt vidare cirklar fick flyga runt den tilltänkta stationsplatsen. Mottagningen på marken av de relativt svaga sändarna i planen är nämligen avgörande vid upprättande av den dubbelriktade förbindelsen. Sändningsslag är AM (amplitudmodulation), vilket än idag fortfarande används i flygradiosammanhang. Till praktisk norm för tillfredställande mottagning valdes 2 uV såsom lägsta ingångsspänning på markmottagaren. (2 uV = två miljondels volt)

Med ledning av dessa mätningar fastställdes areastationen för Torslandas distriktstrafikledning att ligga i Göteborg, Falköping (Mösseberg) Dingle (norra Bohuslän), samt Karlstad. Areastationerna för Torslandas del blev färdigställda 1953. Utrustningarna blev av samma typ som fanns installerade på flyplatserna – Standard Radio 50 watts sändare, samt Standard Radio mottagare. Alla areastationer var utförda med dubblerade utrustningar , ordinarie och reserv samt erforderliga manöverutrustningar, allt inrymt i ett golvstativ. Manöver skedde via riksledningen (en grov telekabel) från distriktstrafikledningen på Torslanda.

Som reserv för VHF-telefonin vid bl.a. kabelfel eller som komplement där VHF ej nådde fram, användes kortvågstelefoni. I Stockholm, Göteborg och Malmö samt Sundsvall och Luleå installerades 2,5 kW sändare, som fjärrbetjänades från respektive platser.

Ett av de svåra problemen vid kortvågstelefoni var störningarna. Det visade sej vara nödvändigt att installera fjärrmanövrerade mottagningsstationer på störningsfria platser utanför samhällena, vidare att öka antalet frekvenskanaler för att möta jonosfärens växlingar.

Digitalteknikens införande i luftfartsradion

Under 1970-talet kom digitaltekniken att börja införas i trafikledningssystemen. En ny lokalisering av kontrollcentralen gjordes i första våningen i ”gula hangaren”. Det var i f.d. Svensk flygtjänst:s lokaler som byggdes om till kontrollcentral, då den gamla var för trång.

STANSAAB levererade ny displayutrustning, SSR-radar infördes, vilket innebar att flygplanseko med fart och höjd presenterades på ett radar –PPI. Genom digital signalbehandling erhölls en mycket ”renare” radarbild utan s.k. clutter, varje flygplan hade också en egen id-symbol, som hela tiden följde med flygplanet.

Nya heltransistoriserade VHF sändare och mottagare installerades av fabrikat Philips, med åtföljande längre tidsintervall för tillsyn och underhåll. Nya långvågsradiofyrar installerades med heltransistoriserade av fabrikat Standard Radio LB100, på följande platser:
Fiskebäck (locatorfyr bana 32), Lindome Greggered, Kloster (Åskloster), Risholmen locatorfyr bana 32(Oljepiren), Orust NDB (nära Henån)

I samband med omläggning av flygleder, lades NDB fyren på Tjörn ned, Brevik (BR). Även ledfyren Munka (SIG) lades ner, men några år innan blev stationshuset träffat av blixten, och hela utrustningen brändes ner till aska och skrot.

Sändarskåpet och transformatorer hade smält ner till en stor järnklump minns jag. Men antennen hade klarat sej utan skador, och stationen byggdes upp igen, nu med ett mindre brandfarligt material, blåbetongsten (radioaktivt), men stationen lades som tidigare nämnts ner.

Nya kontroll-centralen med StanSAAB radarskärmar
Nya kontroll-centralen med StanSAAB radarskärmar

 

Ny radarstation vid Anten utanför Alingsås

I mitten på 70-talet hade det börjat projekteras för en ny modernare radarstation vid sjön Anten – Kvarnabo närmare bestämt, det var en toppmodern radarstation med digitalteknik med radarutrustning för PSR och SSR. Den togs i bruk 1984 . Kontrollcentralen på Torslanda lades ner, och en ny togs i bruk på Landvetter Flygplats 1980.

En stor del av displayutrustningen flyttades från Torslanda till Landvetter, och byggdes upp först i en halva, för att ej orsaka avbrott i flygtrafikledningen. Även Flygvapnet kunde nu få tillgång till en toppmodern radarstation vid övningar samt övervakning av svenskt luftrum Den är fortfarande i bruk men byggdes till i mitten på 90-talet med en monopuls radar MSSR.

I oktober 1977 när Torslanda stängdes som flygplats och flyttade över verksamheten till Landvetter flyttade även jag med, och jag arbetade då på Landvetter fram till min pensionering 2003, men det är som man säger en helt annan historia.

En normal arbetsdag för en teletekniker på 60-talet

Anländer till Torslanda kl. 07.00, arbetslokalen är belägen i andra våningen i Gula  hangaren i den norra ändan av byggnaden där vi disponerade två kontor, en verkstad, samt förrådsutrymme. Lunchrum/fikarum delade vi med flygtrafikledningen, så ibland kunde det bli ganska trångt i fikarummet.

Nils Hansson som var chef och arbetsledare, hade hand om planering av tillsyner/ underhåll av de olika kommunikations och navigationsutrustningarna.

En typisk arbetsdag kunde vara att Nils Hansson gav två tekniker i uppdrag att göra en månadstillsyn på Munka NDB, en långvågsfyr i flygleden Oslo – Göteborg.

Jag och en tekniker fick då ta med oss ett vanligt universal mätinstrument, några enklare handverktyg, en dammsugare, in med allt i den gula tjänstebilen, och så iväg mot Skepplanda/Munka via Bohus och R45. Vid passage av Älvängen fanns det ett stamfik, och där stannade vi och tog första dagens kaffekopp, samt medhavda smörgåsar.

Efter fikastunden in i tjänstebilen igen och vidare in på en lite mindre grusväg in i skogen, och väl framme vid NDB-fyren, urlastning av våra verktyg, och så in i sändarhuset, oftast låg det stora drivor av döda flugor på golvet, så det första som gjordes var att sopa upp, och sedan ut med skräpet i marken. Ibland hände det att små skogsmöss tagit sej in i huset, minns en gång när ordinarie sändare brutit ner, orsaken till detta var att en skogmus klivit omkring på högspänningstransformatorn och krupit på anslutningen till 2500 volt, detta gjorde att säkringen bränt av och sändaren bröt ner. Hur det gick för skogsmusen? Det får du själv föreställa dej.

Sen var det fram med dammsugaren, men först ett telefonsamtal till Kontrollcentralen på Torslanda, och få tillstånd att ”låna” sändaren någon timma för underhåll.

Oftast var det inga problem, men låg det ett flygplan i flygleden, fick man vänta några tiotal minuter. Sedan slå av huvudströmbrytaren till sändaren, dammsugning inuti sändarskåpet samt golv. Sedan igång med sändaren igen, både ordinarie och reserv provades, avläsning av instrument för de olika rörstegen (radiorör på den tiden) för att kontrollera anodströmmar och spänningar.

Efter detta var det dags att kontrollera reservkraft-dieselmotorn med igångkörning, bränslenivå i oljetanken, kontroll av startbatteri, simulering av nätavbrott, genom att koppla bort inkommande nätkraft med huvudströmbrytaren.

Efter ca: 20 sekunder skulle då dieselmotorn komma igång, och kopplats in via automatik till sändaren. Sedan var det dags att kontrollera den yttre miljön runt antennmasten, klippa bort sly och grenar som ev. låg emot antennen, tvättning med vatten av antennisolator, kontroll av staglinor.

Som sista åtgärd var att kontrollera ventilationsfläkten, speciellt under sommartid, då det kunde bli ganska varmt inne i sändarhuset. Innan det var dags att smälla igen dörren, ifyllande av stationsloggbok med åtgärd och signatur.

Sedan tillbaka mot Torslanda igen men först en lunchrast, vanligt var att vi stannade till i Kungälv och åt lunch där, sedan till kexfabriken och köpa ”kexbräck”

På den tiden utgick dagtraktamente efter 4 timmar vad jag minns ca: 30-40 kronor, och det räckte gott och väl för både fika och lunch på den tiden, skattefritt var det ju också.

Vi var alltid två tekniker vid service/underhållsarbete, detta på grund av säkerhetsbestämmelserna, när det gäller arbete vid högspänningsanläggning.

Arbetsförhållanden vid Torslanda

Arbetet slutade normalt kl. 16.00, men efter det att man arbetat ca: två år, fick man ingå i B-vaktslistan, alltså förskjuten arbetstid från kl. 14.30 till 22.00, samt jourtjänst under helger. Men oftast vid behov , fick man ringa någon som arbetade dagtid, och få hjälp att laga ett mer komplicerat fel, ex.vis vid fel på radaranläggningarna.

Kvällstid arbetade man ensam, och under vintertid kunde det hända att man fick åka ut till ILS-antennsystemet och borsta av blötsnö på antennerna, speciellt när temperatur låg runt 0 grader, och snön vräkte ner, minns en vinter vid ILS kurssändare, där sändaranläggningen var inbyggd i en betongbunker, och en stor trälucka som låg över ingångstrappan ej var ordentligt pålagd, yrsnön hade fullständigt lagt sej över trapporna ner, det blev till att gräva sej ner i den ganska tunga snön, och sedan bända upp dörren, för att komma in till sändarna. Det var ett ganska slitsamt arbete att sedan gå ut till antennsystemet och borsta av all blötsnö som lagt sej på antennelementen. Ibland kunde det plötsligt klarna upp innan snön smält bort, och då frös det till isbark.

Våra löner var inte speciellt höga med tanke på det kvalificerade arbete vi hade, men det var ett friskt och omväxlande arbete, med mycket utomhusarbete och rörligt. Några av oss yngre tekniker höll oss i fysisk trim genom att träna terränglöpning och ibland spela fotboll. Efter duschen var det sen skönt att koppla av med en öl i fikarummet. Men under alla år som jag arbetade på Torslanda, trivdes jag utmärkt med alla arbetskamrater, Luftfartsverkets anställda, SMHI:s personal, flygföretagen, ingen nämnd och ingen glömd.

Men en sak måste jag berätta om, det gällde parkeringsplatsen som låg mittemot den gula hangaren, vi som personal fick ju parkera där som anställda , men flygplatschefen Stig Andersson som var en minst sagt sparsam man, fick för sej att vi fick minsann lösa våra egna parkeringsproblem. Han ville naturligvis dra in parkeringspengar från passagerare istället för att vi skulle stå där gratis. Med andra ord vi fick lösa detta på annat sätt. Vi på RMS Televerket blev förbannade och skrev ihop ett brev till Justitieombudsmannen och undrade om man fick göra så mot personal anställda på en statlig flygplats. Detta resulterade i att det kom en artikel om detta i en större kvällstidning, och där dom relaterade varför Flygplatschefen Stig Andersson blivit JO-anmäld. Det hela utmynnade naturligtvis inte till någon som helst åtgärd mot FC, men en knäpp på näsan fick han i alla fall.

Utbildning inom Televerket

I mitten på 60-talet när vi fått dom första VOR-fyrarna i drift, blev det en kurs i VOR-teknik, den hade anordnats på Bromma flygplats, och jag fick tillsammans med en kollega flyga till Bromma med ett SAS Metropolitan flygplan i tjänsten.

Flera av mina kollegor läste också på kvällstid in gymnasieingenjörsexamen, för att kunna hänga med i den tekniska utvecklingen som skedde på 60-70 talet. Sen fick jag kontinuerligt genomgå ett stort antal tekniska kurser genom alla åren under Televerkstiden.

Löneutveckling

Vid denna tiden i Televerket var det lönegrader och tjänsteår som gällde, och oavsett om du var bra eller dålig så var det en ständig kamp om att försöka höja löneläget varje år när det var löneförhandling.

Det var nästan omöjligt att få någon individuell löneutveckling som ju då kunde innebära att man så att säga ”gick förbi” någon annan med längre tjänsteår. Men som statligt anställd hade man fri läkarvård, fri medicin, fri tjänstetelefon, så några förmåner hade man som inte syntes i lönekuvertet ( ja, vi fick kontanta pengar i ett halvgenomskinligt kuvert varje månad)

Förklaringar och förkortningar

I inledningen av kapitlet har jag använt orden ultrakortvågstelefoni, idag är det förkortningen VHF som gäller.

Följande lista med översättning från gamla uttryck till nya engelska förkortningar följer här:

RMS = Radio Maintenance Service
Ultrakortvåg = VHF Very High Frequency
Kortvåg = HF High Frequency
Långvågsradiofyr = NDB Non Directional Beacon
Allriktad ultrakortvågsfyr = VOR Very high frequency Omni Range
Angöringsradiofyr långvåg = Locator
Markeringsfyr = Marker, använder frekvensen 75 MHz över hela världen
Radiokompassmottagare = ADF Automatic Direction Finding
Radar pulseko = PSR Primary Surveilliance Radar
Radartransponder = SSR Secondary Surveilliance Radar
Monopulsradar = MSSR Monopulse Secondary Surveilliance Radar
Instrumentlandningssystem = ILS Instrument Landing System
Planpolär indikator = PPI Plan Polar Indicator
Rörligt eko indikering = MTI Moving Target Indication (i radarsammanhang)
Lågtäckande radarsändare/mottagare = Lowbeam (för flygplan på lägre höjder)
Högtäckande radarsändare/mottagare = Highbeam (för flygplan på hög höjd)
Precisionslandningsradar = PAR Precision Approach Radar
VOLMET = metrological information for aircrafts in flight

Artikeln författad av Bertil Bengtsson i januari 2013
Som arbetade inom luftfarten från 1960 – 2003